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Deep learning, due to its unprecedented success in tasks such as
image classification, has emerged as a new tool in image recon-
struction with potential to change the field. In this paper, we
demonstrate a crucial phenomenon: Deep learning typically yields
unstable methods for image reconstruction. The instabilities usu-
ally occur in several forms: 1) Certain tiny, almost undetectable
perturbations, both in the image and sampling domain, may
result in severe artefacts in the reconstruction; 2) a small struc-
tural change, for example, a tumor, may not be captured in the
reconstructed image; and 3) (a counterintuitive type of instability)
more samples may yield poorer performance. Our stability test
with algorithms and easy-to-use software detects the instability
phenomena. The test is aimed at researchers, to test their net-
works for instabilities, and for government agencies, such as the
Food and Drug Administration (FDA), to secure safe use of deep
learning methods.
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There are two paradigm changes currently happening: 1)
Artificial intelligence (AI) is replacing humans in problem

solving; however, 2) AI is also replacing the standard algo-
rithms in computational science and engineering. Since reliable
numerical calculations are paramount, algorithms for compu-
tational science are traditionally based on two pillars: accuracy
and stability. This is, in particular, true of image reconstruction,
which is a mainstay of computational science, providing funda-
mental tools in medical, scientific, and industrial imaging. This
paper demonstrates that the stability pillar is typically absent
in current deep learning and AI-based algorithms for image
reconstruction. This raises two fundamental questions: How reli-
able are such algorithms when applied in the sciences, and do
AI-based algorithms have an unavoidable Achilles heel: instabil-
ity? This paper introduces a comprehensive testing framework
designed to demonstrate, investigate, and, ultimately, answer
these foundational questions.

The importance of stable and accurate methods for image
reconstruction for inverse problems is hard to overestimate.
These techniques form the foundation for essential tools across
the physical and life sciences such as MRI, computerized tomog-
raphy (CT), fluorescence microscopy, electron tomography,
NMR, radio interferometry, lensless cameras, etc. Moreover, sta-
bility is traditionally considered a necessity in order to secure
reliable and trustworthy methods used in, for example, cancer
diagnosis. Hence, there is an extensive literature on designing
stable methods for image reconstruction in inverse problems
(1–4).

AI techniques such as deep learning and neural networks (5)
have provided a new paradigm with new techniques in inverse
problems (6–15) that may change the field. In particular, the
reconstruction algorithms learn how to best do the reconstruction
based on training from previous data, and, through this train-
ing procedure, aim to optimize the quality of the reconstruction.
This is a radical change from the current state of the art (SoA)
from an engineering, physical, and mathematical point of view.

AI and deep learning have already changed the field of com-
puter vision and image classification (16–19), where the perfor-
mance is now referred to as super human (20). However, the
success comes with a price. Indeed, the methods are highly unsta-
ble. It is now well established (21–25) that high-performance
deep learning methods for image classification are subject to fail-
ure given tiny, almost invisible perturbation of the image. An
image of a cat may be classified correctly; however, a tiny change,
invisible to the human eye, may cause the algorithm to change its
classification label from cat to fire truck, or another label far from
the original.

In this paper, we establish the instability phenomenon of
deep learning in image reconstruction for inverse problems. A
potential surprising conclusion is that the phenomenon may be
independent of the underlying mathematical model. For exam-
ple, MRI is based on sampling the Fourier transform, whereas
CT is based on sampling the Radon transform. These are rather
different models, yet the instability phenomena happen for both
sampling modalities when using deep learning.

There is, however, a big difference between the instabilities of
deep learning for image classification and our results on insta-
bilities of deep learning for image reconstruction. Firstly, in the
former case, there is only one thing that could go wrong: A small
perturbation results in a wrong classification. In image recon-
struction, there are several potential forms of instabilities. In
particular, we consider three crucial issues: 1) instabilities with
respect to certain tiny perturbations, 2) instabilities with respect
to small structural changes (for example a brain image with
or without a small tumor), and 3) instabilities with respect to
changes in the number of samples. Secondly, the two problems
are totally unrelated. Indeed, the former problem is, in its sim-
plest form, a decision problem, and hence the decision function
(“Is there a cat in the image?”) to be approximated is necessarily
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discontinuous. However, the problem of reconstructing an image
from Fourier coefficients, as is the problem in MRI, is completely
different. In this case, there exist stable and accurate methods
that depend continuously on the input. It is therefore paradoxical
that deep learning leads to unstable methods for problems that
can be solved accurately in a stable way (SI Appendix, Methods).

The networks we have tested are unstable either in the form
of category 1 or 2 or both. Moreover, networks that are highly
stable in one of the categories tend to be highly unstable in the
other. The instability in form of category 3, however, occurs for
some networks but not all. The findings raise two fundamental
questions:

1) Does AI, as we know it, come at a cost? Is instability a
necessary by-product of our current AI techniques?

2) Can reconstruction methods based on deep learning always
be safely used in the physical and life sciences? Or, are
there cases for which instabilities may lead to, for example,
incorrect medical diagnosis if applied in medical imaging?

The scope of this paper is on the second question, as the first
question is on foundations, and our stability test provides the
starting point for answering question 2. However, even if insta-
bilities occur, this should not rule out the use of deep learning
methods in inverse problems. In fact, one may be able to show,
with large empirical statistical tests, that the artifacts caused by
instabilities occur infrequently. As our test reveals, there is a
myriad of different artifacts that may occur, as a result of the
instabilities, suggesting vast efforts needed to answer question 2.
A detailed account is provided in Conclusion .

The Instability Test
The instability test is based on the three instability issues men-
tioned above. We consider instabilities with respect to the
following.

Tiny Worst-Case Perturbations. The tiny perturbation could be in
the image domain or in the sampling domain. When consider-
ing medical imaging, a perturbation in the image domain could
come from a slight movement of the patient, small anatomic dif-
ferences between people, etc. The perturbation in the sampling
domain may be caused by malfunctioning of the equipment or
the inevitable noise dictated by the physical model of the scan-
ning machine. However, a perturbation in the image domain
may imply a perturbation in the sampling domain. Also, in many
cases, the mathematical model of the sampling reveals that such
a sampling process implies an operator that is surjective onto its
range, and hence there exists a perturbation in the image domain
corresponding to the perturbation in the sampling domain. Thus,
a combination of all these factors may yield perturbations that, in
a worst-case scenario, may be quite specific, hard to model, and
hard to protect against, unless one has a completely stable neural
network.

The instability test includes algorithms that do the following.
Given an image and a neural network, designed for image recon-
struction from samples provided by a specific sampling modality,
the algorithm searches for a perturbation of the image that
makes the most severe change in the output of the network while
still keeping the perturbation small. In a simple mathematical
form, this can be described as follows. Given an image x ∈RN

(we interpret an image as a vector for simplicity), a matrix A∈
Cm×N representing the sampling modality (for example, a dis-
crete Fourier transform modeling MRI), and a neural network
f :Cm→CN , the neural network reconstructs an approximation
x̃ to x defined by y =Ax , where x̃ = f (y). The algorithm seeks
an r ∈RN such that

‖f (y +Ar)− f (y)‖ is large, while ‖r‖ is small;

see Methods for details. However, the perturbation could, of
course, be put on the measurement vector y instead.

Small Structural Changes in the Image. By structural change,
we mean a change in the image domain that may not be
tiny, and typically is significant and clearly visible, but is
still small (for example, a small tumor). The purpose is to
check whether the network can recover important details that
are crucial in, for example, medical assessments. In particu-
lar, given the image x ∈RN , we add a perturbation r ∈RN ,
where r is a detail that is clearly visible in the perturbed
image x + r , and check whether r is still clearly visible in the
reconstructed image,

x̂ = f (A(x + r)).

In this paper, we consider the symbols from cards as well as let-
ters. In particular, we add the symbols ♠,♥,♦,♣ and the letters
CAN U SEE IT to the image. The reason for this is that card

symbols as well as letters are fine details that are hard to detect,
and thus represent a reasonable challenge for the network. If the
network is able to recover these small structural changes, it is
likely to recover other details of the same size. On the other
hand, if the network fails on these basic changes, it is likely to
fail on other details as well. The symbols can, of course, be spec-
ified depending on the specific application. Our choice is merely
for illustration.

An important note is that, when testing stability, both with
respect to tiny perturbations and with respect to small structural
changes, the test is always done in comparison with an SoA sta-
ble method in order to check that any instabilities produced by
the neural network are due to the network itself and not because
of ill-conditioning of the inverse problem. The SoA methods
used are based on compressed sensing and sparse regularization
(26–28). These methods often come with mathematical stabil-
ity guaranties (29), and are hence suitable as benchmarks (see
Methods for details).

Changing the Number of Samples in the Sampling Device (Such as
the MRI or CT Scanner). Typical SoA methods share a common
quality: More samples imply better quality of the reconstruction.
Given that deep learning neural networks in inverse problems
are trained given a specific sampling pattern, the question is,
How robust is the trained network with respect to changes in the
sampling? The test checks whether the quality of the reconstruc-
tion deteriorates with more samples. This is a crucial question in
applications. For example, the recent implementation of com-
pressed sensing on Philips MRI machines allows the user to
change the undersampling ration for every scan. This means
that, if a network is trained on 25% subsampling, say, and,
suddenly, the user changes the subsampling ratio to 35%, one
would want an improved recovery. If the quality deteriorates
or stagnates with more samples, this means that one will have
to produce networks trained for each and every combination
of subsampling that the machine allows for. Finally, due to the
other instability issues, every such network must, individually,
be empirically statistically tested to detect whether the occur-
rence of instabilities is rare or not. It is not enough to test on
only one neural network, as their instabilities may be completely
different.

Testing the Test
We test six deep learning neural networks selected based on
their strong performance, wide range in architectures, and dif-
ference in sampling patterns and subsampling ratios, as well as
their difference in training data. The specific details about the
architecture and the training data of the tested networks can be
found in SI Appendix.
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Fig. 1. Perturbations rj (created to simulate worst-case effect) with |r1|< |r2|< |r3| are added to the image x. (Top) Images 1 to 4 are original image x
and perturbations x + rj . (Bottom) Images 1 to 4 are reconstructions from A(x + rj) using the Deep MRI (DM) network f , where A is a subsampled Fourier
transform (33% subsampling); see Methods and SI Appendix for details. (Top and Bottom) Image 5 is a reconstruction from Ax and A(x + r3) using an SoA
method; see Methods for details. Note how the artifacts (red arrows) are hard to dismiss as nonphysical.

An important note is that the tests performed are not designed
to test deep learning against SoA in terms of performance on
specific images. The test is designed to detect the instability phe-
nomenon. Hence, the comparison with SoA is only to verify that
the instabilities are exclusive only to neural networks based on
deep learning, and not due to an ill-conditioning of the problem
itself. Moreover, as is clear from the images, in the unperturbed
cases, the best performance varies between neural networks and
SoA. The list of networks is as follows.

AUTOMAP (6) is a neural network for low-resolution single-
coil MRI with 60% subsampling. The training set consists of
brain images with white noise added to the Fourier samples.

DAGAN (12) is a network for medium-resolution single-coil
MRI with 20% subsampling, and is trained with a variety of brain
images.

Deep MRI (11) is a neural network for medium-resolution
single-coil MRI with 33% subsampling. It is trained with detailed
cardiac MR images.

Ell 50 (9) is a network for CT or any Radon transform-based
inverse problem. It is trained on images containing solely ellipses

(hence the name Ell 50). The number 50 refers to the number of
lines used in the sampling in the sinogram.

Med 50 (9) has exactly the same architecture as Ell 50 and is
used for CT; however, it is trained with medical images (hence
the name Med 50) from the Mayo Clinic database (13). The
number of lines used in the sampling from the sinogram is 50.

MRI-VN (14) is a network for medium- to high-resolution
parallel MRI with 15 coil elements and 15% subsampling. The
training is done with a variety of knee images.

Stability with Respect to Tiny Worst-Case Perturbations
Below follows the description of the test applied to some of
the networks where we detect instabilities with respect to tiny
perturbations.

For the Deep MRI test, we perturb the image x with a
sequence of perturbations {rj}3j=1 with |r1|< |r2|< |r3| in order
to simulate how the instabilities continuously transform the
reconstructed image from a very high-quality reconstruction to
an almost unrecognizable distortion. This is illustrated in Fig. 1,
Bottom. Note that the perturbations are almost invisible to the

Fig. 2. A random Gaussian vector e ∈Cm is computed by drawing (the real and imaginary part of) each component independently from the normal
distribution N (0, 10). We let v = A*e, and rescale v so that ‖v‖2 =

1
4‖r1‖2, where r1 is the perturbation from Fig. 1. The Deep MRI network f reconstructs

from the measurements A(x + r1 + v) and shows the same artifact as was seen for r1 in Fig. 1. Note that, in this experiment, A ∈Cm×N is a subsampled
normalized discrete Fourier transform (33% subsampling), so that AA* = I that is, e = Av.

30090 | www.pnas.org/cgi/doi/10.1073/pnas.1907377117 Antun et al.
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human eye, as demonstrated in Fig. 1., Top. The rj perturba-
tions are created by early stopping of the algorithm iterating to
solve for the optimal worst-case perturbation. The purpose of
this experiment is to demonstrate how the gradual change in
perturbation creates artifacts that may be hard to verify as non-
physical. Indeed, the worst-case perturbation r3 causes clearly a
reconstruction that, in a real-world situation, can be dismissed
by a clinician as nonphysical. However, for the smallest r1, we
have a perturbation that is completely invisible to the human
eye, yet it results in a reconstruction that is hard to dismiss
as nonphysical, and provides an incorrect representation of the
actual image. Such examples could, potentially, lead to incorrect
medical diagnosis. Note that SoA methods are not affected by
the perturbation as demonstrated in the fifth column of Fig. 1.
However, although this network is highly unstable with respect
to certain tiny perturbations, it is highly stable with respect to
small structured changes; see Fig. 5, Lower Middle. Note also
that the instabilities are actually stable. In particular, in Fig. 2,
we demonstrate how a random Gaussian perturbation added to
the perturbation r1 still yields a substantial artifact (see also SI
Appendix, Methods).

The AUTOMAP experiment is similar to the one above; how-
ever, in this case, we add r̃1, . . . , r̃4 to the measurements y =Ax ,
where |r̃1|< |r̃2|< |r̃3|< |r̃4|, and A is a subsampled discrete
Fourier transform. In order to illustrate how small the perturba-
tions are, we have visualized |x + rj | in Fig. 3, Top, where y +
r̃j =A(x + rj ). To emphasize how the network reconstruction
completely deforms the image, we have, inspired by the second

test on structural changes, added a small structural change in
the form of a heart that gradually disappears completely in the
network reconstruction. This is demonstrated in Fig. 3, Middle,
and Fig. 3, Bottom contains the reconstruction done by an SoA
method. Note that the worst-case perturbations are completely
different than the ones failing the Deep MRI network. Hence,
the artifacts are also completely different. These perturbations
are white noise-like, and the reconstructions from the network
provide a similar impression. As this is a standard artifact in
MRI, it is, however, not clear how to protect against the poten-
tial bad tiny noise. Indeed, a detail may be washed out, as shown
in the experiment (note the heart inserted with slightly different
intensities in the brain image), but the similarity to a standard
artifact may make it difficult to judge that this is an untrustworthy
image.

In the case of MRI-VN, we add one perturbation r1 to the
image, where r1 is produced by letting the algorithm search-
ing for the worst perturbation run until it has converged. The
results are shown in the first two columns of Fig. 4, and the
conclusion is the same for the MRI-VN net as for Deep MRI
and AUTOPMAP: Perturbations barely visible to the human
eye, even when zooming in, yield substantial misleading artifacts.
Note also that the perturbation has no effect on the SoA method.

For Med-50, we add a perturbation r2 that is also produced
by running the algorithm until it has converged, and the results
are visualized in the last two columns of Fig. 4. The Med-50 net-
work is moderately unstable with respect to tiny perturbations
compared to Deep MRI, AUTOMAP, and MRI-VN; however,

Fig. 3. Perturbations r̃j (created to simulate worst-case effect) are added to the measurements y = Ax, where |̃r1|< |̃r2|< |̃r3|< |̃r4|, and A is a subsampled
Fourier transform (60% subsampling). To visualize, we show |x + rj|, where y + r̃j = A(x + rj). (Top) Original image x with perturbations rj . (Middle) Recon-
structions from A(x + rj) by the AUTOMAP network f . (Bottom) Reconstructions from A(x + rj) by an SoA method (see Methods for details). A detail in the
form of a heart, with varying intensity, is added to visualize the loss in quality.

Antun et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30091
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severe artifacts are clearly seen. It is worth noting that this
network is used for the Radon transform, which is, from a sta-
bility point of view, a more unstable operator than the Fourier
transform when considering its inverse.

Stability with Respect to Small Structural Changes
Instabilities with respect to small structural changes are docu-
mented below.

The Ell-50 network provides a stark example of instability with
respect to structural perturbation. Indeed, none of the details are
visible in the reconstruction as documented in Fig. 5, Top. This
may not be entirely surprising, given that the network is trained
on ellipses.

The DAGAN network is not as unstable as the Ell-50 net-
work with respect to structural changes. However, as seen in
Fig. 5, Upper Middle, the blurring of the structural details are
substantial, and the instability is still critical.

MRI-VN is an example of a moderately unstable network
when considering structural changes. Note, however, how the
instability coincides with the lack of ability to reconstruct details
in general. This is documented in Fig. 5, Middle.

For Deep MRI, to demonstrate how the stability with respect
to small structured changes coincides with the ability to recon-
struct details, we show how stable the Deep MRI network is.
Observe also how well the details in the image are preserved
in Fig. 5, Lower Middle. Here we have lowered the subsampling
ration to 25% even when the network is trained on 33% subsam-
pling ratio. We want to point out that none of the symbols, nor
any text, has been used in the training set.

Stability with Respect to More Samples
Certain convolutional neural networks will allow for the flexi-
bility of changing the amount of sampling. In our test cases, all
of the networks except AUTOMAP have this feature, and we
report on the stability with respect to changes in the amount of
samples below and in Fig. 5, Bottom.

Ell 50 has the strongest and most fascinating decay in perfor-
mance as a function of an increasing subsampling ratio. Med 50
is similar, however, with a less steep decline in reconstruction
quality.

For DAGAN, the reconstruction quality deteriorates with
more samples, similar to the Ell 50/Med 50 networks.

Fig. 4. (Top) Perturbations r1, r2 (created to simulate worst-case effect) are added to the images x and x̃. (Middle) The reconstructions by the network f
(MRI-VN), from Ax and A(x + r1), and the network f̃ (MED 50), from Ãx̃ and Ã(x̃ + r2). A is a subsampled discrete Fourier transform, and Ã is a subsampled
Radon transform. (Bottom) SoA comparisons. Red arrows are added to highlight the instabilities.

30092 | www.pnas.org/cgi/doi/10.1073/pnas.1907377117 Antun et al.
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Fig. 5. (Top, Upper Middle, Middle, and Lower Middle) Images xj plus structured perturbations rj (in the form of text and symbols) are reconstructed
from measurements yj = Aj(xj + rj) with neural networks fj and SoA methods. The networks are f1 = Ell 50, f2 = DAGAN, f3 = MRI-VN, and f4 = Deep MRI.
The sampling modalities Aj are as follows: A1 is a subsampled discrete Radon transform, A2 is a subsampled discrete Fourier transform (single coil
simulation), A3 is a superposition of subsampled discrete Fourier transforms (parallel MRI simulation with 15 coils elements), and A4 is a subsampled
discrete Fourier transform (single coil). Note that Deep MRI has not been trained with images containing any of the letters or symbols used in the per-
turbation, yet it is completely stable with respect to the structural changes. The same is true for the AUTOMAP network (see first column of Fig. 3).
(Bottom) PSNR as a function of the subsampling rate for different networks. The dashed red line indicates the subsampling ratio that the networks were
trained for.
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The VN-MRI network provides reconstructions where the
quality stagnates with more samples, as opposed to the decay in
performance witnessed in the other cases.

The Deep MRI network is the only one that behaves in a
way aligned with standard SoA methods and provides better
reconstructions when more samples are added.

Conclusion
The new paradigm of learning the reconstruction algorithm
for image reconstruction in inverse problem, through deep
learning, typically yields unstable methods. Moreover, our
test reveals numerous instability phenomena, challenges, and
research directions. In particular, we find the following:

1) Certain tiny perturbations lead to a myriad of different arti-
facts. Different networks yield different artifacts and insta-
bilities, and, as Figs. 1, 3, and 4 reveal, there is no common
denominator. Moreover, the artifacts may be difficult to
detect as nonphysical. Thus, several key questions emerge:
Given a trained neural network, which types of artifacts
may the network produce? How is the instability related to
the network architecture, training set, and also subsampling
patterns?

2) There is variety in the failure of recovering structural changes.
There is a great variety in the instabilities with respect to
structural changes as demonstrated in Fig. 4, ranging from
complete removal of details to more subtle distortions and
blurring of the features. How is this related to the network
architecture and training set? Moreover, does the subsam-
pling pattern play a role? It is important, however, to observe
(as in Fig. 5, Lower Middle and the first column of Fig. 3)
that there are perfectly stable networks with respect to struc-
tural changes, even when the training set does not contain any
images with such details.

3) Networks must be retrained on any subsampling pattern. The
fact that more samples may cause the quality of reconstruc-
tion to either deteriorate or stagnate means that each network
has to be retrained on every specific subsampling pattern,
subsampling ratio, and dimensions used. Hence, one may,
in practice, need hundreds of different network to facilitate

the many different combinations of dimensions, subsampling
ratios, and sampling patterns.

4) Instabilities are not necessarily rare events. A key question
regarding instabilities with respect to tiny perturbations is
whether they may occur in practice. The example in Fig. 2
suggests that there is a ball around a worst-case perturba-
tion in which the severe artifacts are always witnessed. This
suggests that the set of “bad” perturbations have Lebesgue
measure greater than zero, and, thus, there will typically be a
nonzero probability of a “bad” perturbation. Estimating this
probability may be highly nontrivial, as the perturbation will
typically be the sum of two random variables, where one vari-
able comes from generic noise and one highly nongeneric
variable is due to patient movements, anatomic differences,
apparatus malfunctions, etc. These predictions can also be
theoretically verified, as discussed in SI Appendix, Methods.

5) The instability phenomenon is not easy to remedy. We
deliberately choose quite different networks in this paper
to highlight the seeming ubiquity of the instability phe-
nomenon. Theoretical insights [see SI Appendix, Methods on
the next generation of methods (30–34)] also support the
conclusion that this phenomenon is nontrivial to overcome.
Finding effective remedies is an extremely important future
challenge.

Code and Data. All of the code is available from https://github.
com/vegarant/Invfool.
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